LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2013

ST 2502/ST 2501-STATISTICAL MATHEMATICS - I

Date: 30/04/2013
Dept. No. \qquad Max. : 100 Marks
Time: 9:00-12:00

PART - A

Answer ALL the questions:
$(10 \times 2=20)$

1. Define Convergent Sequence.
2. Define a bounded sequence
3. Define absolute convergence of a series.
4. Define partial sum of a series.
5. Examine if Rolle's Theorem is applicable to the function $f(x)=x, 0 \leq x<1$, and $f(1)=0$.
6. Define probability generating function.
7. Define linearly dependent set of vectors.
8. State the properties of probability mass function
9. Define rank of a matrix
10. Define orthogonal matrix.

PART - B

Answer any FIVE questions: $(5 \times 8=40)$
11. Show that $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}+3}=\frac{1}{2}$.
12. Define cumulative distribution function and write down its properties.
13. Show that the series $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots .+\frac{1}{n(n+1)} \ldots$ is convergent and its sum is 1 .
14. Discuss the convergence / divergence of (i) $\sum_{n-1}^{\infty} \frac{1}{n} \quad$ (ii) $\sum_{n-1}^{\infty} \frac{1}{n^{2}}$.
15. Show that $M_{x_{1}+x_{22} \ldots+x_{n}}(t)=M_{x_{1}}(t) . M_{x_{2}}(t) \ldots M_{x_{n}}(t)$, where $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables and M denotes moment generating function.
16. Verify whether $(1,2,4),,(-1,2,0),(-1,6,4)$ are linearly dependent or independent
17. Verify whether the Matrix $\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ is orthogonal.
18. Find the inverse of the martin $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$.

PART - C

Answer any TWO questions:

19. i) Show that every convergent sequence is bounded. Is the converse true? Justify your answer.
ii) Let X be a continues random variable with p.d.f. given by $\mathrm{f}(\mathrm{x}) \begin{cases}k x, & 0 \leq x<1 \\ k, & 1 \leq x<2 \\ -k x+3 k, & 2 \leq x<3 \\ 0, & \text { otherwise }\end{cases}$ Determine the constant k and the c.d.f. $\mathrm{F}(\mathrm{x})$.
(10 marks)
20. i) State and prove Rolle's Theorem.
ii) Find the first four moments of a distribution whose m.g.f.is $\mathrm{M}_{\mathrm{x}}(\mathrm{t})=\exp \left\{4\left(\mathrm{e}^{\mathrm{t}}-1\right)\right\}$.
21. i) If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x+y}{x^{2}+y^{2}}$ find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$.
ii) The joint probability distribution of two random variables X and Y is given by $P[X=0, Y=1]=\frac{1}{3}, \quad P[X=1, Y=-1]=\frac{1}{3}$ and $P[X=1, Y=1]=\frac{1}{3}$.
Find a) Marginal distributions of X and Y.
b) Conditional distribution of X given $Y=1$.
22. i) Find the rank of $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$.
ii) Two random variables X and Y have the following joint p.d.f.
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}2-x-y, & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$
Find $\operatorname{Var}(X), \operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$.
